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Abstract 

We discuss geometrical aspects of Higgs systems and Toda field theory in the framework of 
the theory of vector bundles on Riemann surfaces of genus greater than one. We point out how 
Toda fields can be considered as equivalent to Higgs systems - a connection on a vector bundle 
E together with an End(E)-valued one form both in the standard and in the Conformal Affine 
case. We discuss how variations of Hodge structures can arise in such a framework and determine 
holomorphic embeddings of Riemann surfaces into locally homogeneous spaces, thus giving hints 
to possible realizations of W,-geometries. 
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1. Introduct ion 

The amount of research activity devoted to the study of conformal and integrable 

systems in two dimensions has reached a considerably high rate in the last years. In 

particular, much attention has been paid to Toda field theories and extended conformal 

(or W) symmetries, and the efforts done in this direction starting from the pioneering 
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papers of Zamolodchikov [36], Gervais and Neveu [ 19] and Fateev and Lukyanov [ 16] 
have attained beautiful results both in the classical and in the quantum case. 

On a more general level, as one of the most remarkable achievements can be also 

considered the bringing to light of the richness of the mathematical structure underly- 
ing such theories, and the deep relationships existing between a priori different field 
theoretical models. 

In this paper we want to make a contribution in such a direction, namely to the study 
of some outcomes of the links between the Toda equations and the geometry of Higgs 

bundles or Higgs pairs, in the framework of the theory of (analytic) vector bundles 
(and connections thereof) on Riemann surfaces of generic genus. 

A Higgs bundle is a system composed of a connection A on a vector bundle E over 
a Riemann surface ~ and a holomorphic endomorphism 0 of E satisfying 

Fm-q- [O,O*] =0 .  (1.1) 

Such structures were first introduced by Hitchin [26], in the framework of self-dual 
Yang Mills equations. The same author, in [ 27], proved their relevance showing that they 

consitute a remarkable example of an algebraically completely integrable hamiltonian 
system. Later on, a growing number of publications were devoted to the study of appli- 

cations of  Higgs pairs in the theory of harmonic bundles, local systems, uniformization 
and variations of Hodge Structures (see, e.g., [ 12,33,34] ). 

Our starting point is the zero-curvature representations of the Toda equations, (both 
in the standard and in the Conformal Affine cases) which in a suitable gauge (see 

also [21 ] ) can be seen to be equivalent to Hitchin's equation ( 1.1 ) for the corresponding 
Higgs pair. Although it is not a difficult outcome of the Toda equations, this is one of 
the central points of  the paper. 

We can then proceed in two directions. At first we can adapt some nowadays fairly 

standard computations in Toda Field theory [9] to prove that the An-t-Toda connection, 
which is naturally defined on the direct sum E = ~)rn__~ I K -(n-l)/2+r of powers of the 

canonical line bundle K on ~, is mapped to an analytic flat connection on the full 
(n - 1 )th jet extension V = J ( K  -~n-1)/2) of K -~n-l)/2, whose degrees of freedom are 

parameterized by Wn-fields. 

On the other hand, it is possible to decompose the Toda connection in a metric part 

plus a deformation a,  which is simply the sum of the Higgs field and its metric conjugate. 
The structure equations for the Higgs pair translate into a harmonicity condition for the 
one-form a. This means that, associated to a Toda system, there is a natural harmonic 
twisted map fH from 2? to a homogeneous manifold. Furthermore, the Toda connection 
(in the standard case), can be shown to satisfy the so-called Griffiths transversality 
conditions [23,33] and so defines a variation of a Hodge structure, a fact already 
noticed in [ 11 ] in the framework of N = 2 superconformal models and their integrable 
deformations. This entails that the map ft4 is actually a holomorphic embedding of 2~ 
into the quotient F \ D of a Griffiths period domain D by the monodromy group/ ' .  

Henceforth, through the theory of Higgs bundles we can associate to a Toda field (and, 
by the discussion above, to a Wn-algebra) a holomorphic map of .S into a hermitean 
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manifold, a detour which can be also suggested by the fact that the construction of 

the Poisson commuting conserved quantities in [27] is reflected in the definition of Wn 

algebras via higher order Casimir invariants [7], and is under current investigation in the 

framework of Langlands-Drinfel'd correspondences (see, e.g., [18], and the references 
quoted therein). 

It is natural thus to interpret such structures as a possible realizations of the Wn ge- 
ometries, introduced in [ 35,20] (and more recently discussed in the framework of BRST 
symmetries in [ 37] ). Although we do not perform here a thorough comparison between 

our framework and such results, we will make some comments about the relationship 
between our picture and the latest results of Gervais, Razumov and Saveliev [32,22] 

about Wn geometry and generalized Plficker embeddings associated to Toda systems 
(Section 6). 

Let us sketch the plan of the paper. In Section 2 we collect some information about 

Higgs pairs and harmonic bundles from [26,12,34]. Then, in Section 3 we recall how 

the Toda equations can be seen as a zero-curvature condition, and describe the above 
mentioned equivalence between Toda fields and Higgs pairs. The extension to the Con- 

formal Affine case is also discussed. We devote Section 4 to the description of the 

mapping between Toda bundles and Wn bundles on curves of arbitrary genus, pointing 

out their global aspects. In Section 5, after reviewing the basics of Griffiths theory of 
Variations of Hodge Structures, we show how the Toda equations fit into this framework 

and prove the holomorphicity of the embedding of ~ determined by the metric part of 
the Toda connection. We finally put our observations and comments in Section 6. 

2. Higgs systems and harmonic bundles on a Riemann surface 

Let 2 be a genus g Riemann surface with canonical bundle K. 

Definition 1. A Higgs bundle over 27 is a pair (E ,0 )  with E a holomorphic vector 
bundle over 27 and 0 E H°(End E®K) .  A Higgs bundle is stable if Mumford's inequality 

c l ( F ) / r k F  < c j ( E ) / r k E  

holds for every non-trivial O-invariant subbundle F C E. 

The generalization of the Narasimhan-Seshadri theorem holds in the following form 
[26,33]: 

Theorem 2. I f  ( E, O) is stable and Cl ( E) = 0 there is a unique unitary connection xTn 
compatible with the holomorphic structure, such that 

F/~+ [0,0"]  = 0 .  (2.1) 

The basic properties of Higgs systems we are going to use in the sequel are the following. 
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Given a connection VH whose curvature equals the commutator [0, 0"] for a holo- 

morphic section 0 E H°(End E ® K) then 

V =Vt¢ + 0 + O* (2.2) 

is a flat  GL(n,  C)-connection, where p ( X )  = - X *  is the anti-involution defining the 
compact real form of the group. 

In [28] the holonomy of V and VH are characterized following the arguments below. 
Let gC be a simple Lie algebra and let [~ -- {hi, el,  f l  } be a principal sl2 subalgebra. Let 
el . . . . .  ek be highest weight vectors of the irreducible representations in which ~i c is 

branched under [7. Then there exists a Lie algebra involution o- of gc sending f l  ---* - f l  
and ei - - - *  --ei, i = 1 . . . . .  k. The fixed point set of or turns out to be the complexification 
of a maximal compact subalgebra of the split real form ~r of gc. 

Since o- commutes with p a careful application of Lie algebra properties along the lines 
of  [29] proves that V~/has holonomy contained in the maximal compact subalgebra of 
gc, while the flat connection V = VH + 8 + 0* has holonomy contained in gr. 

The notion of Higgs system can be related to the one of harmonic bundle in a way we 
will briefly illustrate. A Higgs system (E, 0) such that (2.1) is satisfied clearly defines 
a pair (V,V), where V is the Coo bundle underlying E and V is the flat connection 

(2.2). Let us now consider a complex rank n vector bundle V equipped with a flat 

connection V. As is well known, the introduction of an hermitean fibre metric H on V 

amounts to a reduction of the structure group from GL(n ,  C) to U ( n ) ,  and allows for 

a splitting 

V = VH + a ,  (2.3) 

where VH is a unitary connection and a is a (C °°) 1-form with values in (the self- 
adjoint part of) End(V). Clearly, the connection x7 being flat is equivalent to the 

following pair of equations [ 12] : 

V 2  + ½[a,a] =0,  (2.4) 

xT•a = 0. (2.5) 

Definition 3 (Corlette, Donaldson, Simpson). We define the pair ( V , V )  to be har- 

monic or equivalently speak of a harmonic metric H if, under the splitting (2.3), we 
have 

VH* te = 0 ,  (2.6) 

where the adjoint is taken with respect to a given metric on E. 

It is then a comparatively easy, but nontheless important remark that, since o~ is 
self-adjoint, we can decompose it as a = 0 + 0", thus showing that Eqs. (2.4), (2.5), 



E. Aldrovandi, G. Falqui /Journal  o f  Geometry and Physics 17 (1995) 2 5 -4 8  29 

(2.6) are equivalent to Hitchin's self-duality equation (2.1), supplemented by J 0 = 0 3 
[ 14,34]. 

The reason why a bundle or a metric satisfying (2.4), (2.5), (2.6) is called harmonic 
is to be understood in the following sense [ 12]. A metric H can be considered as a 

multivalued mapping fH : 2 --~ GL(n ,C) /U(n)  or, in other words, as a section of a 

bundle over 2 whose standard fibre is the coset GL(n ,C) /U(n) .  Since x7 is flat, V 
itself and all its associated bundles come from a representation of the fundamental group 

of 2. The section fH can in fact be regarded as a map from the universal cover of 2, 

f .  " ~. --~ GL(n, C) /U(n) ,  equivariant with respect to the action of Irl ( 2 ) .  In other 
words we have the commutative diagram 

2f f" ~ GL(n ,C) /U(n)  

1 1 
f rt 

2 ~ F \ GL(n ,C) /U(n)  

Here 7rl ( 2 )  acts on ~, as the group of Deck transformations and on GL(n,C) via the 

holonomy representation F. It is well known that there exists a fiat coordinate system 
for V in which ~7 is simply given by the exterior differential d. In these coordinates 
one has 

1 --1 a = - ~ f t 4  d f n ,  (2.7) 

which means that a can be identified with the differential of f n ,  and therefore Eq. (2.6) 

implies that the map f n  is harmonic, according to the Eells-Sampson characterization of 
harmonic maps [ 15]. See [ 14,34] for details. We shall refer to the map f n  so obtained 

as the "classifying map" and by a slight abuse of language, a "harmonic bundle" will 
mean either the Higgs system (E, 0) satisfying (2.1) or the related C °~ pair (V, XT). 

Thus what we are going to consider in the sequel are harmonic bundles plus the 

additional structure given by the reduction of the structure group to a split real form [28 ]. 

Let us consider the bundle 

n--I 

E = ~ K -~"-1)/2+r. (2.8) 
r=0 

Its determinant is trivial, therefore we can consider its structure group to be the semisim- 
ple group G c = SL(n,C).  According to [28], we take 0 to be given by 

(01 i/ u2 0 1 

O= u3 "'. "'. "'- , (2.9) 

"" ".  0 

U n • . . U 3 U2 

3 The cLoperator clearly comes from the (0,1) part of V s .  
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where Ur E H°(,Y,K r) for r = 2 . . . . .  n. It follows from [34], Lemmas 2.11 and 2.12, 
that the holonomy representation given by the pair (E, 0) is defined over R if and only 

if there exists a symmetric bilinear map S : E ® E ~ Oz satisfying 

S(Ou, v) = S(u, Or) 

for any two local sections u, v of E. This happens to be the case with the pair defined 

by (2.8) and (2.9), and with the map S given by the matrix [ 13] ( l / 
S = .." . (2.10) 

1 

Of course, this only tells us that the structure group, and hence the holonomy, is reduced 

to a real form of G c = SL(n, C).  Then Hitchin's analysis briefly reviewed earlier tells 

that this is in fact the split form G r = SL(n, R).  It is of some interest to notice that the 
real form SL(n, R) appears here in a rather disguised form, that is, the conjugation ~" 

in sl(n, C) which selects the split real form is concretely given by 

r ( f )  = S~S, f E s l ( n , C ) ,  (2.11) 

which nevertheless can be shown to be conjugate to the standard split real form given 

by 

3. The Toda equations and their link with Higgs bundles 

Let g be a simple finite dimensional Lie algebra and let us consider a Cartan-Weyl 
basis 

[hi, hj] = 0 ,  [hi, e+~] = q-otie+,~, [e~,e_a] = ~"~ aihi. 

A Toda field over a Riemann surface ~ is a field ~P taking values in the Cartan 

subalgebra of g and satisfying the equations 

azaz~ = ~ hi e '~i(~) • (3.1) 

It is a well known fact that Eqs. (3.1) can be obtained as the compatibility condition 
for a linear system [30]. Let us rederive this result in the framework of the theory of 
connections. Let us denote by A~_ ( d ! )  the set of all positive (negative) simple roots 

and by E+ (E_) their sum, and define a g-valued local 1-form A = Az dz + Ae d~ as 

Az = 10zcP + exp( ½ ad ~P) • E+, (3.2) 

A~ = - ½azcp + exp( -½ ad<P) • E_.  (3.3) 

The curvature FA is a (1, 1)-form 

Fz z = azAe - azAz + [ Az,Az] • 
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Hence we get 

Fz e = -OzOeq~ + [exP(½ adq~) • g+ ,  exp( -½ adq~) • g _ ] .  

Since [~,  E+] = 4- }--~'~,~e,a+ ot(cb)e+,~, we have 

exp(-I-½ adqb), g+ = ~ exp l a (@)  e+,~ 

and so 

F~ ~ = -Oz 0 ~  + 

31 

A g = Oz@ + g+,  (3.4) 

Az g- = e x p ( -  adq0 • g_ .  (3.5) 

This form leads directly to the Higgs bundle picture. In fact, we can consider exp(q~) 

as an hermitean form on the fibers and split DA = d + A as 

DH + 0 + tg, (3.6) 

where DH is the metric connection associated to H = exp(q~), 

0 = g+ dz (3.7) 

and t~ = H - L g _ H .  Namely we have that 

DH' = O + ocrp , D n "  = O. 

Since the conjugation p acts as p ( h i )  = - h i ,  p ( e  +) = -e~-, we get that 0 is the metric 
adjoint endomorphism of 0. Hence, together with the obvious fact that DH"O = 0, the 

zero-curvature equations in this gauge are 

D ,  2 + [0,0"] = 0 ,  (3.8) 

thus showing that any solution to the Toda equations gives rise to a well defined solution 
of the Hitchin equations for the Higgs bundle. We follow [ 21] and call Toda-gauge the 
one where the connection takes the form (3.4), (3.5). 

The endomorphism 0 constructed above correspond exactly to the one given by (2.9) 
if we set all the Ur'S to zero, while the vector bundle E is given by (2.8), where n - 1 

is the rank of the Lie algebra, i.e., 0 c = An-1. The metric H is given by a diagonal 
matrix whose entries hr = e~, ,  r = 1 . . . . .  n, are themselves metrics on the factors 
K -(n-1)/2+r-I appearing in (2.8). This completely fixes the transformation law of the 

Z exP(½Ot(,I~) + fl(¢~)) [ea, eft] 

= -@z@zq~ + Z hi e x p ( a i ( ~ )  ) .  

Let us now consider the gauge transformed connection under the element g = exp(½~) 

[ 5 ]. We have 
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fields Cr, and one can check it coincides with the well-known conformal transformation 
properties of  the Toda fields [ 5]. 

We wish now to extend the correspondence between Toda-like models and Higgs 
systems to the so-called Conformal Affine Toda models [6]. To this purpose, we retain 

the same form for the metric H but modify the endomorphism 0 to 

0 = C+ + u e _ ¢ , ,  (3.9) 

where ~/, is the longest root and e+c, are the positive and negative root vectors. It follows 

that 0* will be given by 

0* = e x p ( -  aden) • (£_ + ~ec,) (3.10) 

(notice that C_ + t~ e~, = - p ( C +  ÷ u e_c,)). Since ~b is the longest root, the element 
e_ c, has degree - k  = - r a n k  ~ with respect to the action of the principal sl2 subalgebra 

0 [29] and therefore we must have u E H ° ( 2 ,  K k+l) [28], which in the An_l-case, 
for instance, means that u is a ( n, 0) -weight differential, i.e. a section of (T~)  ~n = K n. 

To clarify the procedure, let us decompose A = B + r/, where r / i s  the 1-form 

rl = u e-¢, dz + ft e -aa~  e¢, d~ 

= u e _ ¢  dz  + t~ e -c , (~)  e¢, d ~ ,  

in such a way that B is the connection associated to the standard Toda equations. Using 
the following fairly standard relation: 

FA = FB + ½ [r/,r/] + DB'r/ 

and [~+, e¢, ] = [ e -  ad¢~ ~c_,  e_c, ] = 0, because ~p is the longest root, we calculate 

½ [r/,r/] = - l u l  2 e -~'(~) [ec,,e_~,] dz A d~,  

DBr/= (a-~ e -c,C~) ec, -- aeu e_~,) dz A d~,  

so that looking at the generators, we see that the equation FA = 0 implies 

FB + ½rn, n] =o,  D~n--O 

separately, which gives 

Oz3g@ = ~ hie '~'(~) -[u[ 2 e -¢'(~) hc,, 

c~u =0, 

(3.11) 

(3.12) 

where he, = [ec,,e_c,]. Now, let us locally put lul 2 = e 2~ so that c~u = 0 yields agT/= 0. 
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Then Eqs. (3.11) and (3.12) read 

0~ 0 ~  = Z hi e'~i( ~ ) - e2V-4'('~) ho ' (3.13) 

OzO~r I = 0 ,  (3.14) 

which essentially coincide with the equations defining the "Conformal Affine Toda" 
model [6,2]. Actually, in our formulation the field associated to the extra central gen- 
erator in the affine algebra is missing. However this is not a serious problem, as the 

dynamics of this missing field is completely fixed by the other ones, whose equations 

of motion are correctly reproduced. We wish to stress that the conformal invariance of 

Eqs. (3. ! 3), (3.14) naturally arises in the present setting, as they are interpreted as the 
integrability condition for a connection on a globally well-defined vector bundle. 

We can summarize the results of this section in the following 

Proposition 4. A solution of the standard Toda equations (3.1) gives rise to a well 
defined solution of Hitchin's equation (2.1), whose underlying Higgs system is given by 
(3. 7) above. The same statement applies to the Conformal Affine Toda equations (3.13), 
(3.14), with (3.7) replaced by (3.9). 

Let us remark that the above set-up allows us to interpret the limit from Conformal 

Affine Toda to standard Toda (see [6] ) in a nice geometrical fashion. In fact, according 
to [28], we can regard the former as a "deformation" of the standard Toda model related 

to a deformation of the associated Higgs bundle. 

4. Toda systems and Wn algebras 

In this section we will make explicit some aspects of the relations between Toda 

equations and Wn algebras [ 19,9] through the theory of connections. It has already 
been established (see, e.g., [ 16,8] ) that classical Wn algebras can be associated to 

the Drinfel 'd-Sokolov reduction of a first order matrix differential operator (i.e. a 

connection) with respect to a parabolic subgroup. Here we show how the field content 
of such a theory can be obtained starting from a solution of the Toda equations in the 

case of systems defined on a higher genus Riemann surface. We shall confine ourselves 

to the case of standard An_l-Toda equations. 
Let us recall that since a Riemann surface has complex dimension 1, the (0, 1) part 

of any connection V is automatically integrable, thus giving a holomorphic structure to 

the complex vector bundle supporting it [4]. In this holomorphic frame one has V"  = c~. 
It will be convenient to refer to the holomorphic bundle so obtained as the holomorphic 
bundle defined by (or associated to) V". Then, if the connection happens to be flat, its 
local ( 1,0)-forms will be holomorphic in the holomorphic gauge. For a complex vector 
bundle to admit a holomorphic connection is a completely non trivial fact [3,25], since 
Weil's theorem states that such a bundle must be a direct sum of indecomposable fiat 

bundles. 
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We want now to construct the holomorphic bundle (in the above sense) associated to 
the basic Higgs bundle (2.8), equipped with the connection 

Dl=O + 

0~o~ 1 

1 I 
O~on-1 1 

O~on (0 ) 
e ~1 - ~  0 

Dll = ~ + e~2-~3 0 (4.1) 

".. ".. 

e~°-i -~n 0 

n (here ~-~i=1 ~0i = 0 ) ,  namely we want to prove the following 

Theorem 5. The holomorphic vector bundle V defined by the flat Toda connection 

D = DH + 0 + 0* is the vector bundle of  (n - 1)-jets of  sections of  K -(n-1~/2. The 

holomorphic connection XT, which is the image of  the Toda connection D, has the 

standard W (or Drinfel'd-Sokolov) form: (01 / 
0 1 

V ~ = O +  • , 

0 1 

W n  W n - -  1 • • • W 2 0 

V "  = 0 ,  (4.2) 

with OW i -~ O, i = 2 . . . .  n. 

Remark  6. We wish to stress the following point. The vector bundle E is a holomorphic 
bundle equipped with the Coo connection D. Its holomorphic structure is given simply 

by D~ = c~. On the other hand V is the holomorphic vector bundle defined by the 
holomorphic structure D ~. Thus the two vector bundles E and V are holomorphically 
distinct, although they are smoothly (i.e. C °O ) equivalent. 

Remark  7. We point out that the previous theorem explicitly constructs the holomorphic 
vector bundle defined by D",  where D is the Toda connection, and identifies it with a 
concrete one (a holomorphic jet bundle). 

The proof of theorem (5) will be divided into steps, or propositions, which are also 
of independent interest. In more detail, we want to show that the vector bundle E, 
associated in a suitable covering {U,,} of £ with the SL(n, C)-cocycle 
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~et f l  = 

k(n-l)/2 a# 

k(n-l)/2-1 aO 

(4.3) 

k-(n-t)/2+l 

k-(n-l)/2 

equipped with the connection D is Ca -equ iva l en t  to the bundle V of  (n - 1)-jets of  

sections o f  K-(n-1) /2 ,  equipped with the connection V. We recall that the transition func- 
= tions ]2,~ of  V can be gotten by expanding the relation t ' ( n - - 1 ) / 2 e  " 

sc~ being a local section 4 of  K -(n-I)~2, and k,,# = az~/Oz#. 
We first discuss the transformation of  D into V. The following proposit ion is well- 

known, see [ 30,5,21 ], and it is implici t ly contained in the calculations of  [ 1 ]. However, 

for the reader 's  convenience and to avoid unpleasant gaps in the arguments proving 

Theorem 5, we feel it worth stating it here and sketching its proof. It is completely local 

in character. 

P r o p o s i t i o n  8. There is a sequence Gk, k = 1 . . . . .  n - 1, of gauge transformations, 
taking their values in the lower nilpotent part of  SL(n, C), such that the connection D 
is mapped by G = I]nk=q 1 Gk into V. 

Proof. It is a straightforward albeit long calculation, so that we only illustrate the 

strategy and the first step. The idea is to show that a column at a time can be operated 

on using ( lower)  nilpotent abelian subalgebras of  sl(n, C) .  I f  Eij is the standard matrix 

with 1 in the i j  entry and zero elsewhere, we put 

n--1 

G = H G~, (4.4) 
k=l 

where 

Gt  = e x p  Z g} k)Ej t= expg} k)Ejk 
j=k + 1 j=k + 1 

_(k),~ and recursively determine the gj ~. 

For instance, at step #1 we have to consider G1 = exp ~ j n  2 ~(1)~ ~j ~ j l ,  

(D,,)a, = (~g~l) + eal(~))E2 l 

n- I  n-1 
- (1) eai(~))Ei+ll + Z e  '~''*) Ei+li+ Z(Ogi+l  -k-g} 1) 

i=2 i=2 

4 For A integer or half-integer we have a well defined power (provided we make the choice of a point of 
order 2 in the Jacobian of X if A is strictly half integer) K 4 and that a (meromorphic or C ~ )  section of K a 
can be identified with a collection of functions o-,~ satisfying o-,~ = k~-t~o- B in each overlapping U,~ N U#. 
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so that the first column reads 

05g9 (l) + e °tl(¢~) 

: (4.5) 

5g~ 1) + g(nl_)l ca,-,(~) 

As for the (1 ,0 )  part of  the connection we have 

n 

(o t )  Gl = Z O~°iEii "~ g(l) E' l "~- e+ 
i=1 

n - 2  
. . ~ - - ~  /¢. (1) a(1)  (1) (1) - -  (1)'~ 

g2 g)+l I ~ctgj+ 1 "q-6j+l(O~Oj+l -- 0q~l) -- -P g)+2) Ej+I 
j=l 

_ o (1 )o (1 ) '~  

We can at once infer that g~i) = -0~ol and set to zero all the coefficients of  Ej+I 1, j = 
1 . . . . .  n - 2 solving for g)l),  j = 3 . . . . .  n together with the first column of  (D" )  c~, 
since, as was proven in [ 1 ], the Toda equations appear as the integrability condition for 

such a system. 
Thus the first step essentially boils down to producing the "right" first column of  the 

connection matrices. One can repeat verbatim the arguments above for the remaining 
columns. The consistency of  the procedure relies in the fact that at step #k we kill all the 

elements of  column k in the (0, 1 )-part, we create the term in the last row in the (1 ,0 )  

part while killing all others (except the one in row k - 1 ). It is not difficult to realize 
that such a configuration is left invariant by the subsequent gauge transformations Gk, 

for k' > k. [] 

The same procedure can be used to prove that the local gauge transformations Gi provide 
a C ~ cochain that sends the cocycle E,~# into the cocycle V,~#. It is interesting to notice 
that, in our framework, the derivatives 0~oi of  the Toda fields appear as (minus)  the 

coefficients g~+)l of  the negative simple roots in the trivializing cochain. It is known [ 5 ] 

that the Toda equations globalize on a higher genus Riemann surface if the following 

non homogeneous gluing law holds: 

• 1 i - I  
~b / = ~b~ + ~ Z ( n  - 21 - l )  l o g l k ~ l  2 . (4 .6 )  

l--O 

Indeed, the transformation law between ga # and ~;,, t~ reproduces the correct factors for 
the local fields _(i) ¢ga i+ 1" 

We now identify the holomorphic vector bundle defined by the Toda connection. This 
is accounted for by the following 

P r o p o s i t i o n  9. Let Vn be a rank n flat vector bundle admitting a filtration 



E. Aldrovandi, G. Falqui/Journal of Geometry and Physics 17 (1995) 25-48 37 

V] (~' C V2 (n) C ' "  C V, (n) (4.7) 

such that Vr(+I/V in'  ~- r ( n M ) / 2 - r , r  = 1 . . . . .  n - 1. I f  g (X)  > 2, then V, is the 
( n - 1 )th-jet extension of K (n-l'/2. 

Proof Let us consider the sequence of  quotients {K (~-1)/2, K ~-1' /2-1 . . . . .  K - ( , - J  )/e}. 

The last one gives the sequence 

o K-( . - ' ,n- ,  O, 

giving [V,] E H I ( K  ('-1)/2 ® V(~n__]), where 

Tensoring with K (n-l)~2 the sequences 

0--~ Vr (n) ----~ Vr(+~ "~, K (n-l)/2-r---+ O, 

(4.8) 

[E]  denotes the equivalence class of  E. 

r = 1 . . . . .  r - 2 (4.9) 

and passing to the long cohomology sequences, we get the segments 

H I ( V ( n ) ® K  (n-I)~2) --~HI(Vr(+~®K (n-l)/2) - - ~ H I ( K  n-r-1  ) - -~0 .  (4.10) 

But VI (") = K (n-I)/2 so that (4.10) gives H 1 (Vr (') ® K (~-1)/2) = 0 for r = 1 . . . . .  n - 2 ,  

and for r = n - 1 we get the desired isomorphism 

H](K(n-1) /2® V(nn_~) ~-- H I ( K )  -~ C .  (4.11) 

The non-triviality of  the extension follows from the fact that V2 (') C V, ( ') is K (n-2)/2 ® 
V2 (2) and that the cocycle defining the 1-jet extension of  the spin bundle 

0 --+ K 1/2 ~ V ( 2 )  --+ g -1/2 ~ 0 (4.12) 

is one half of  the first Chern class of  X. 
By Weil's theorem, Vn cannot be decomposable into the direct sum of the powers of  

K appearing in the diagonals, and any two non-trivial extensions of  FI by F2 lying in 

the same ray in H 1 (Hom(F1,  F2)) give rise to isomorphic vector bundles [31 ]. Thus Vn 
is seen to be isomorphic with the ( n -  1 )-jet extension of  K (n-1)/2 once one notices that 

the latter has the same sequence of  quotients as in the statement of  the proposition. [] 

Example: the sl(3) case 

Let us examine in some detail the A2 (alias ~[(3, C ) )  case in order to clarify how 

the picture outlined above works. 
The transition functions for the 2-jet bundle of  K -1 (which is the case at hand) are 

given by the relations 

8,~tr,~ = 0~ log k,~ 1 0 O#o-~ . 
t)20.a --2 2 k~O~logk,~# ko a logko  \ 

(4.13) 

The smooth isomorphism between V = JZ(K-1)  and E = K - 1  E) C @ K whose tran- 

sition functions S ~  are the diagonal part of  Eq. (4.13), is accomplished by a smooth 
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SL(3, C)-valued 0-cochain G,~, which we seek in the factorized form (see the proof of 
Prop. 8) G,~ = G~I)G(~ ) with (1 00)(,00) 

G(~I)= h,) 1 0 , G(~2)= 0 I 0 . 
f,~ 0 I 0 g,~ I 

We will use the following standard overparametrization of the Toda field by means 
of the triple [ ~01, tp2, ~03 ] related to the fields ~bl, 4,2 by ~bl = ~Pl - ~2, ~b2 = ~P2 - ~P3. 
Let us consider the Toda connection having the form o ) ( o  oo) 

A I = 0 Oq~2 1 , A" = e¢~-cz 0 0 . 
0 0 0~01 0 e~O2-¢3 0 

(4.14) 

Under the transformation by G~ l) the cocycle (4.13) is sent into one of the form 

( k,,/~ 0 0 ) 
0 1 0 
0 k~O~logk~/3 k ~  

provided we have in the overlappings 

h~, = k ~ h #  - k-~a# log k~t3 , 

and 

- 3  2 k + k; h a logk   - k  a log °8.  

It is then easy to see that the reduction of the cocyle (4.13) to its diagonal part is 
accomplished by the transformations G~ 2) provided g,, = k ~ g #  - k-~a# log k,~/~. 

More interesting is the transformation of the connection (4.14), which we display 
below dropping the indices referring to the coordinate patches: 

Oq~l + h  1 O )  
(A~) G~''= Oh+h(Oq~2-c~ol)  + f - h  2 O~o2-h 1 , 

Of + f(O,p3 - O~ol) - h f  - f  0 

0 0 0 )  
= e~1-~2 + S h  0 0 . 

(AU)G(') he  ~-~3 + g f  e ~02-~3 0 

This means that we have to solve for the equations 

a~pi + h = 0 ,  

e ÷,-~z +Sh = 0,  

Oh + h(Oq~2 - c~q~l ) + f - h 2 = O, 

h e ~2-~3 + O f  = O, 
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which gives h = -0q~l and f = a2~01 + 0~010~02, the other two equations being identi- 

cally true on the solutions of the Toda equations. The action of the subsequent gauge 

transformation G ~2) gives g = &P3 and sends the Toda connection into the form (0,0) 
(A' )  ~ = 0 0 1 , (A") G = 0 ,  (4.15) 

w3 w2 0 

where w2 is the usual energy momentum tensor of the 513 Toda theory, 

W2 : (Oq~bl)2 q_ (0q~2)2 __ [02~bl q_ 02~1~2 ..{_ oq~bl 0~2  ] , (4.16) 

and 

W3 = ¢9W2 q- (Oq~l)20q~2 --  o~q~l (Oq~2) 2 -k- 20gb202~b2 - 03q~2 

is the other generator of the W3-algebra. 

(4.17) 

5. Embeddings and W-geometry 

The purpose of this section is to discuss more thoroughly the geometrical features 

of (standard) Toda Field Theory. In particular, we shall discuss the embeddings of 
a Riemann surface determined by the classifying map resulting from the self-duality 

equations, see Section 2. The crucial properties for this analysis are the natural filtration 
of the Higgs bundle, and the fact that, at least in the standard Toda case, there is 

an additional real structure preserved by the Toda connection. As in Section 4, our 

discussion will be confined to the An case. 

5.1. The additional real structure 

Consider the basic Higgs system given by (3.7) and (2.8) together with the harmonic 

metric H. By the general discussion in Section 2 we know that the structure group of 

E as a harmonic bundle reduces to SL(n , • ) .  We now show that there is another real 
structure compatible with this one. Let A : E ~ E be the endomorphism equal to ( -  1 )r 
on each factor K -~n-1)/2+r. With it, we construct an indefinite hermitean form (-, .) 

over E, namely 

( u , v ) = ( A u ,  V)tl,  u, v E E .  (5.1) 

A straightforward calculation proves 

L e m m a  10. The hermitean form (5.1) is flat with respect to the Toda connection 
D = DH + 0 + 0", that is we have 

d(u ,v)  = (Du,  v ) + ( u ,  D v ) ,  u, v E E .  
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This implies, of  course, that a reduction of  the structure group from SL(n ,C)  to 

SU(p, q), where p = [ n / 2 ] ,  q = n - p, takes place. More precisely, what we actually 

mean by "SU(p ,q)"  is the group corresponding to the fixed point set in gc = An-l of  

the conjugation u given by 

u(s  c ) = - I p ( s  ¢:)1, s ¢ E g ¢ ,  (5.2) 

where in this case p is simply minus the hermitean conjugate and I is the diagonal 

matrix (1 ) 
- 1  

t = . (5.3) 

±1 

(the sign in the last element being determined according to the parity of  n). It is obvious 

that this is the standard form for SU(p, q) up to a coordinate reshuffling. It is also easy 

to see that the conjugations 7- defined in Section 2 (Eq. (2.11))  and u commute, so that 

(the Lie algebra of) the structure group of  the harmonic bundle corresponding to the 

Toda equations is in fact given by the intersection of  the fixed point sets of  1" and u. Let 

us call G the real structure group so obtained. We further define K to be its maximal 

compact subgroup. 

By the results about harmonic bundles quoted in Section 2, we thus obtain a harmonic 

map 

fH : 2f , G / K ,  

where Y, is the universal cover of  2 ,  or, in other terms, a map 

f n  : S , F \  G / K ,  

where the discrete subgroup F C G is the image of  ~'1 (2;) through the holonomy. By a 

little abuse of  language, we use the same symbol for both. For the sake of  convenience, 

let us denote N = G / K  and N = F \ G/K. The stability properties of  the Higgs bundle 

we are looking at [28] imply the action of  F on /~ / to  be properly discontinuos, so that 
N is a manifold. 

Thus we can interpret the Toda field equations as the equations characterizing the 
embedding of  the Riemann surface into a some homogeneous manifold N through a 

harmonic map f n .  We can actually refine this, that is, starting from the map f n  or - 
what is the same - from the harmonic bundle we can construct an embedding F : .,~ ~ II) 

into a complex manifold D. This requires analyzing more extensively the structure of  
the bundle we associated to the Toda equations. 

5.2. Toda systems and variations of  Hodge structures 

Upon rewriting our rank-n basic bundle (2.8) as [13] 
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E =  ( ~  E r's, E r's = K -(n-I) /2+r,  (5.4) 

r+s=n-- 1 

the Higgs field 0 appearing in the Toda connection, Eq. (3.7), has the property 

0 : E r'" , E r-l 's+l ® K (5.5) 

and the factors are orthogonal with respect to both the metric H and the indefinite 

hermitean form (., .}. As a consequence, the complete connection D = DH + 0 + 0* 

satisfies the following Griffiths transversality condition: 

D : E r's ' A I ' ° ( E  r- l ' '+l  ) • A I ' ° ( E  r's) ~ A° '1(E r's) • A ° ' I ( E  +1's-1 ) , 5.6) 

where by A ' ( E  r's) we mean C °~ sections. It is useful for later purposes to rewrite 5.6) 

in the following form. Consider the filtration 

E = F ° D F 1 D " "  D F n-1 D F n = {0}, 

where 

n--1 n--1 

Fq = 0 K-(n- l ) /2+r  = ( ~  E r's . 5.7) 
r=q r=q 

Then the transversality condition can be restated as 

DI : F q ~ AI 'O(F q-1 ) , D "  : F q ' AO'I(F q) . ( 5 . 8 )  

Notice that rk F q = n - q and that these are the subbundles 5 corresponding to the 

filtration of V by the Vq(~)'s appearing in Section 4. In the purely holomorphic picture 

(5.8) reads 

V t  : Vq (n, , J ? l ( V q ( n { ) ,  ( 5 . 9 )  

where f21 (.) denotes the space of holomorphic differentials. 

According to Simpson, a harmonic bundle E = (~r+.,--w E "  whose factors are orthog- 
onal with respect to an indefinite hermitean form (., .), satisfying any one of (5 .5)-(5.9)  
defines a complex  variation o f  Hodge structure [33,34,23] 6 of weight w. 

Thus the Higgs bundle associated to the Toda equations displays the formal properties 
of a Variation of Hodge Structure of weight w = n - 1, whose "Hodge Bundles" 
E r's = K - (n- I ) /2+r  ~ F r / F  r+l are in fact line bundles. We shall use the machinery of 

Variations of Hodge Structure to prove 

Theorem 11. The Toda equations determine a holomorphic  embedding 

F , : X  , F \ D ,  

5 Up to a reshuffling of indices. 
a The main difference from Griffiths' original definition is that in Simpson's the existence of the integral 

lattice is left out. We shall stick to this one. 
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where F is the monodromy group, D "~ G/Ko a Griffiths period domain, G is the 
structure group defined in Section 5.1 and Ko C K C G a (compact) subgroup. The map 
FH is the metric H seen as a section of a flat bundle over ~ with typical fibre G/Ko 
and its differential is given by the Higgs field O. 

For the proof we need to recall some basic properties of Griffiths period domains (or 

classifying spaces). 

A brief tour through period domains 

Let us denote by E a complex vector space equipped with 

- a conjugation .'~ : E --* E, 
- a bilinear form Q : E × E ~ C such that: 

(i) Q(v ,u )  = ( - 1 ) W Q ( u , v ) ,  u,v E E, 

(ii) it is "real" with respect to the conjugation of E, namely Q(u, v) = Q(u ~, v~), 

u, v E E .  
A period domain ]I) is the set of all weight w Hodge structures on E, namely the set of 

all decompositions E = ~)r+~w E r,s satisfying 

Q(Er'S,E r''s') = 0 unless r I = s and s I = r ,  

F-SQ(u ,u  °) > 0  for any u E E r's 

If  the weight w is n - l, which is the case we will be dealing with, then all the factors 

in a given Hodge structure are actually lines, but this is not quite so in general. It is 

useful to define the same object in terms of filtrations. To this end, define the operator 
C : E ~ E by CI~ . . . .  i r-s. Then I~ is defined to be the set of all (descending) 

filtrations {F q} in E such that 

Q(Fq, F w-q+l ) = 0 ,  Q(Cu,u ~) > 0 .  (5.10) 

w The link between the two definitions lies in the decomposition F q = ~)r=q E r,s. Dropping 
the second condition in either one of the two definitions we just gave, yields the compact 
dual ~ of D. It is an algebraic subvariety of a flag manifold, and hence of a product of 
Grassmannians [24]. This is clear from the second definition. This implies for T b, the 
holomorphic tangent bundle of ~,  that 

w + q 
T b c ~ )  H o m ( F q , E / F  q) = ~ Hom(Eq,w-q,  Eq  . . . . .  q+r). 

q=l q=l r=l 

The group G c = Aut (E ,Q)  acts transitively on it [23], thus D is in fact a complex 

manifold. The period domain D lies inside it as an open subset, and therefore as a 
complex submanifold. It is the open orbit through the origin of ~ of the real form of 
Gc with respect to the given conjugation in E. 

Proof of  Theorem 11 
We start with 



E. Aldrovandi, G. Falqui/Journal of Geometry and Physics 17 (1995) 25-48 43 

L e m m a  12. The group G introduced in subsection 5.1 is the real group acting on the 

classifying space o f  weight n - 1 Hodge structures on a vector space o f  dimension n. 

Proof. The choice of  a basis el . . . . .  en in a complex vector field E of  dimension n 

allows to define the decomposition 

E-.w. O Er ' s '  E r ' s = C { e r + l }  , 
r+s=n-- 1 

and an indefinite hermitean form through 

(el, ej)  = ~ij( --1 )i+1 . 

Then the form (.,-) is the one represented by the matrix I of  (5.3). We can moreover 

consider the conjugation map 

'r : E -----~ E ,  u~- -~u~=S~ ,  

where S is the matrix (2.10).  Notice that with this definition we have (Er'S) 'r = E s,~. 

Thus the above decomposition is a (reference) Hodge structure in E of  weight n - 1 

[23,24].  Then we define the bilinear form Q by 

Q ( u , v )  =i" - l (u ,v°~) ,  u, v E E .  

It is easy to check that it has the properties listed before in the r6sum6 of  period 

domains. We finally introduce the complex Lie group Gc = SO(Q,  C) _= Aut (E ,  Q) of  

those complex automorphisms of  E which preserve Q. 

Recall now that G has been defined as the real group arising as intersection of  the 

fixed point sets of  the conjugations 7- and u in (2.11), (5.2). Therefore it preserves 

the hermitean form (., .). It is then obvious that G coincides with the real subgroup of  

Gc defined by the conjugation .'~, as we clearly have (gu )  '~ = ~-(g) u '~, for u C E and 

g C  Gc. 
The statement now follows from the fact that the period domain II) is the quotient 

G/Ko [23,24],  where K0 = G A B and B C Gc is the stabilizer of  the reference Hodge 

structure. U] 

R e m a r k  13. The stabilizer group K0 is in general strictly contained in the maximal 

compact subgroup K of  G. 

Let us now come back to the Higgs bundle E equipped with the filtration { F  q} defined 

in Eq. (5.7). 
To construct the mapping Fn : ~ --~ F \  D, choose a basepoint x0 on £.  Then we 

look at the fibre Ex0 as the fixed vector space E. Notice that the conjugation in the proof 
of  the preceding lemma agrees with the one in E constructed in Section 2. Thus we 

repeat the constructions in the proof of  Lemma 12 and get the hermitean form (., ")x,, 

and the required bilinear form Q as well. Since the connection D is flat, we can use the 

isomorphism of any fibre Ex with Ex0 to induce a filtration on Exo (which will be the 
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image of the filtration {Fx q} on Ex). The hermitean form (., .) on E isflat under D, thus 
the orthogonality properties of the subspaces in the fibre Ex translate into the bilinear 
relations for the induced filtration on Ex0. Therefore the reference Hodge structure in 
Ex defines a new Hodge structure in Exo and we obtain a local map from ~ to D. The 
entire construction is of course defined up to the action of the monodromy group. 

Lemma 14. The mapping FH : X ~ F \ D so defined is holomorphic. 

Proof The statement is local. By construction, the differential of Fn is defined by the 
flat connection D itself. From the inclusion D C D we have [24] 

n - I  

TD C 1 ~  Hom(l~,E/l~) 
q=l 

and using this picture for the tangent bundle, holomorphicity follows from the transver- 

sality condition D"  : F q ~ A°'I(Fq). [] 

Remark 15. According to the given description of T6, the other half of the transversality 
condition says that Fn,  (Tz) C ~)rn~ l Hom(E r.n-I -~, E r--l,n-r). This is the geometrical 

meaning of the grading condition imposed on the Toda connection [ 21,32]. 

Finally, we can conclude that the map Fu is essentially the metric H, seen as a section 
of a bundle in homogeneous spaces, by applying the same argument we used in Section 
2. The key point is to notice that the Variation of Hodge Structure defines a reduction 
of the structure group G to its intersection with the stabilizer of the reference Hodge 
structure (the group we called K0 before) [33], and it is obvious that the section so 
obtained coincides with the metric H. The theorem is proved. [] 

Remark 16. We notice that the targets of the holomorphic embeddings so obtained 
depend on the genus of the Riemann Surface, see Section 6 below. This is a consequence 
of the holonomy representation of the fundamental group on the Griffiths period domain 
D. 

The situation with our embeddings is the following. Using the fibration D ~ G/Ko 
G/K ~ ~I [23] we have the diagram 

r \ ~  

X , N 
f .  

where the map fH is harmonic (N is in general not complex) and FH is holomorphic. 
This is an instance of a more general situation in which harmonic maps are covered by 
Variations of Hodge Structure [ 10]. 
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The complete classification of the homogeneous spaces for the An case has been 
performed by Griffiths [23], as 

~) = ~ SO(n+ 1 ,n ,R) /U(1 )  n for A2n, 

t Sp(2n,• ) /U(1)  n for A2n-l. 

Our favourite example of A2 can be easily worked out completely. In this case we Q is 
represented by the matrix 

( ) 1 . ( 5 . 1 1 )  

- 1  

Looking at the left half of the Hodge diamond, the first bilinear relation (5.10) yields 
the divisor 2XoX2 - X~ = 0 in IP 2, the rational normal curve given by the Veronese 

embedding, while the second selects the complement of the real circle Iz 12 = 2 in this 
rational curve, i.e., we have the disjoint union of two copies of the Poincar6 disk. 

We shall conclude this section with a brief comment on the Conforrnal Affine case. 

Most of the structure described in this section does not carry over directly to this more 
general case. In particular, Lemma 10 is easily seen to be false if 0 is given by (3.9). 

Therefore the second real structure cannot be defined by means of the endomorphism 

I, which implies that we cannot follow the path of the standard Toda case to define a 

Variation of Hodge Structure and we cannot use the holomorphic embedding into the 

Griffiths period domain any longer. 
A possible way out can be conceived along the following lines. The real structure 

described in Section 2 is not ruled out by the deformation leading to the Conformal 

Affine Toda system and therefore there is still a map 

fH : Y, , S L ( n , R ) / S O ( n ) .  

The target manifolds not being complex, the map f n  above is not suitable as it stands 
to construct holomorphic embeddings. Anyhow, since the map fH is harmonic and £ 
has complex dimension 1, we will have 

V O f ,  = 0 ,  (5.12) 

where in this case 3fH is to be understood as a section of the vector bundle 

7~, @ f~4(T~sLfn,R)/SOfn)) 

and V is the tensor product of the Kiihler connection on K -- 7~ and the pull-back 

of the Riemannian one on T~SL(,,R)/SOfn), respectively [ 10]. Thus Of H is a holomorphic 
section of a certain complex vector bundle over X. Since the map f~/ is determined by 
the metric H, by Eq. (2.7) we have that Eq. (5.12) is the translation in this framework 

of c~0 = 0. 
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6. Conclusions and comments  

In this paper we have analyzed the "triangular" correspondence [21,26] 

Toda +--, Wn - algebras ~ Higgs bundles 

from the point of view of the theory of hermitean holomorphic vector bundles on a 
generic genus Riemann surface 2?. Although the origin of such relationships can be 

traced back to the fact that both the Toda Field and Hitchin's self-duality equations are 

dimensional reductions of a suitable four-dimensional Self-Dual Yang-Mills theory, we 
deemed it worthwhile to work out some topics from the two-dimensional viewpoint. 

In particular we have proved that the assignement of a solution of the An_ 1 Toda 
Field equations determines both in standard and in the Conformal Affine case a harmonic 
Higgs bundle. The metric is parameterized by the Toda fields, and the Higgs field arises 

as the non metric part of the total fiat connection. 

The underlying holomorphic vector bundle V is uniquely fixed to be the bundle of 
(n - 1 )th-jets of sections of K -~n-l)/2. Wn fields are naturally identified with the non 

trivial entries of the flat analytic connection on V. Actually, this is not an unexpected 

feature and it has already been found out e.g. in [9]; however, we would like to point 
out that a very nice geometrical significance of the Toda fields as the building blocks of 

the local isomorphisms (in the C°~-category) between the two holomorphically distinct 
bundles E = ~)n~l K_~n_l)/2+r and V = J ( K  -(n-l) /2)  is clarified together with some 

global features of the higher genus case which were perhaps a bit overlooked in the 

literature. 
The main point can be considered the discussion of how the datum of a An-l-Toda 

Field on 27 leads, in the standard case, to the realization of the Riemann Surface as a 

base space for a Variation of Hodge Structure of weight n - 1 and rank n, and henceforth 
a holomorphic map from 27 into a quotient of a Griffiths period domain G/Ko. 

Since these results go in the direction of the so called geometry of Wn-embeddings as 
put forward by Gervais, Saveliev and collaborators, a couple of comments are in order. 

First of all, in the paper [32] the following picture is explained. The starting point 

is a C ~ - m a p  from 27 to a complex Lie group G which, under suitable instances (the 

"grading condition") lifts a holomorphic map ~Op : 27 ~ G/P,  P being a parabolic 
subgroup of G. Considering those parabolic subgroups Pi, i = 1 . . . . .  rank G, for which 
G/Pi is the ith fundamental homogeneous space for G, the associated maps ~oe~ define 
maps from 27 to II~(V/), the projectivisation of the ith fundamental representation of 
G. Then it is shown that the (generalized) PRicker relations for the curvature of the 
pull-back on 2? of the Fubini-Study metrics on ]~(V/) on 2 translate, when expressed 
through local K~ihler potentials, into the Toda Field equations for a suitably chosen local 
representative of  q~e;. 

Our starting point is different: we start from a solution of the Toda Field equations 
and we determine a holomorphic map from 27 to a suitable locally homogeneous space. 
It follows that the target space we obtain is only locally determined by the rank of the 
Cartan subalgebra in which the Toda fields take values, since in the large the monodromy 
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action of  the fundamental group of  2 on the Griffiths period domain must be factored 

out, thus yielding a different global target space according to the genus g(27). 

Nonetheless, PRicker formulas are of  local type, so one should expect them to arise 

also in our context. Indeed, one can see that they can be recovered by considering the 

natural embeddings of  the algebraic manifold 1~ into the product of  Grassmannians [24] 

G ( h l , n )  X G(h2, n) . . .  × G ( h n - l , n )  

(hr is the rank of  F r in the Hodge filtration) and pulling back to I~ the determinant 

line bundles associated to the tautological sequences 

0 ~ Shr ' Cn ~ Qhr >0 

over G(hr,  n).  PRicker coordinates for G(hr,  n) are indeed obtained by taking holomor- 

phic sections of  det ahr. It is to be borne in mind that D is strictly contained in the 

complete flag manifold for SL(n,  C) :  the A,_l - type  Pliicker formulas ensuing from the 

various tautological sequences can be obtained by explicitly realizing the embedding of  

in the product considered above. 

The following, and final, remark is also partly motivated by the last observation. 

We have shown that the Toda connection D is compatible with the two Lie algebra 

automorphisms (2.11) and (5.2) which we rewrite here: 

"r(X) = S X S ,  v ( X )  = - I X t l .  

Following [ 17], we notice that ~ = Tv = vr  is the extension of  the automorphism of the 

A-type Dynkin diagram which can be used to define the algebras Br and Cr as quotient 

of  A2r and A2r-1, respectively. Moreover, since the Griffiths period domains in which 

~, is immersed are quotients of  SO(r  + 1, r) and Sp(2r,]~),  respectively, we are led 

to conclude that the maps induced by the metric might give insight into the geometry 

of  the W ( B )  and W(C)-algebras obtained via the folding procedure by the original 

A-theory. 

We hope to discuss those questions more thoroughly in a future work. 
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